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Abstract—Machine learning is a dynamic predictive tool that provides unparalleled insight on data patterns using statistical
analysis. In this assignment, we explore and build two simple, yet versatile supervised learning classifiers: K-Nearest
Neighbour (KNN) and Decision Tree (DT). We implement a KNN model, including a weighted version, using different distance
functions and a greedy recursive DT model using different cost functions. We test the models on two health-related
benchmark datasets to compare their efficiency and accuracy. We observe that the overall testing accuracy of the KNN
models is higher than that of the DT models for the two given datasets. Overall, we also notice a lower testing accuracy for the
Messidor dataset in comparison to the Hepatitis dataset. We highlight that, in our implementation, a weighted version of the

KNN model improves the prediction accuracy.

1 INTRODUCTION

LASSIFICATION is a powerful machine learning
Ctechnique. In the aspect of biological research,
machine learning helps identify clinically important
information from a large biological dataset to support
healthcare-related decisions, such as disease predic-
tion and detection. For instance, based on a patient’s
health data, such as age, gender, weight and family
history, classification can predict whether the patient
has a specific disease, giving them the opportunity to
receive early treatment and preventive medication [1].
In this assignment, we consider two medical datasets
- Hepatitis [2] and Diabetic Retinopathy Debrecen
Dataset (Messidor Dataset) [3] - from UCI Machine
Learning Repository.

1.1 Related Work

In this section, we mention two previous works
related to the Hepatitis dataset and one related to the
Messidor dataset.

The Hepatitis dataset has been used in research on
composite nearest neighbour classifiers and one study
[4] investigated whether classifiers from any given
model class can be combined to create a composite
classifier with higher accuracy. Past research intro-
duced algorithms that combine some components of
nearest neighbour classifiers, each storing some proto-
typical instances. After running the algorithms using
several datasets, including the Hepatitis dataset, it was
found that composite nearest neighbour classifiers that
store a small number of prototypical instances can
provide better classification accuracy compared to a
normal KNN classifier.

The Hepatitis dataset has also been used in explor-
ing lazy decision tree (DT) ensembles [5]. The lazy
DT chooses a test that optimizes the resulting branch
path taken by the given test data. By implementing
a relevance-cased boosting style algorithm to build a
lazy DT for each test data, a significantly improved
base learner performance was obtained. With the ad-
dition of a new distance-based pruning method, over-
titting caused by lazy DT is ameliorated, and the
overall accuracy and comprehensibility of both Lazy
DT and Boosted Lazy DT are enhanced.

Several studies investigate different ways to carry
out feature selection and the Messidor dataset is an
example set used in one such work [6]. In the high-
lighted work, the authors used the Curvature-based
Feature Selection (CFS) method to rank the weights of
all features on electronic health records from the Mes-
sidor dataset. The experimental results reveal that CFS
achieved a significantly better performance against
principal component analysis and other approaches.

2 METHODS

Both KNN and DT are supervised learning models:
the models are trained with labelled datasets in order
to classify data and predict the labels of the test data.

2.1 KNN classification method

The basic principle of a KNN model works on the
assumption that points falling into the same class are
more likely to be found next to each other, hence the
name “nearest neighbours”.



COMP 551, PROJECT 1, FALL 2022

For a test point, the labels of points closer to it exert
higher influences on the prediction. The closeness of
points is formally quantified by distances; commonly,
Euclidean distance and Manhattan distance. There
are also different regimes used to cast predictions.
The unweighted KNN model treats every K-nearest
neighbour as equally influential on the test point label,
while a weighted version quantifies the importance of
neighbours based on the distance to the target point
by similarity. A careful choice of similarity and K-value
can improve the model performance.

In our implementation, we consider three dis-
tance functions, two of which are canonical: Eu-
clidean and Manhattan distance. We experiment with
a weighted version of Euclidean distance, which can
be viewed as assigning weights to features. By inter-
preting the weight function as an implicit assignment
of weights, one simple candidate for the weight vector
is the feature-label correlation vector. More precisely,
if 20" 2(m) ¢ R are the training points, we define
the correlation-weighted distance by

dy (x(m)’l,(m’)) = Z wl(xgm) - :Bz(ml))2a
=1

where w € R" is the feature-label correlation vector,
with w; being the correlation between the i-th feature
and the label.

We also consider three modes of similarity: con-
stant similarity (equivalent to unweighted KNN),
inverse-distance similarity, and cosine similarity. To
describe the role of similarity in making predictions
more precisely, for a test point z*), if Ny 4(z*)
is the set of indices of the K nearest samples to
x(*) with distance function d, the class probability
pe = Prly™) = ¢|z)] is given by

2 neNx @) sim(z(™, z0NI(y™) = ¢)
Wi (z) :

DPec =

where Wi (z(*)) is the sum of similarity sim (2™, 2(*))
over n € N 4(z*)). The prediction is made by choos-
ing the label ¢ which maximizes p..

o Constant: sim(z(™,2(*)) = 1, this corresponds
to the unweighted KNN;

o Inverse-distance: sim(z(™, 2(*)) = m.

the special case that d(z(™,z(*)) = 0 for some
n, the label of z(*) is dictated by the labels
of points with zero distance by majority vote.
This is, in principle, equivalent to adopting the
convention 1/0 := oo.

For

ine: sim(z(™, z(9) = @) .
o Cosine: sim(z'™, z\*)) Hw(")llﬂm(*)II’Where<’>

denotes the usual vector inner product, and ||-||
denotes the Euclidean norm.

2.2 DT classification method

DT is another commonly used learning algorithm
because it provides better interpretability and good
handling of mixed-type (categorical and numerical)
datasets. Compared to KNN which does not require
any training (i.e. a lazy learner), DT is an algorithm
that recursively selects its optimal parameters - fea-
ture, threshold, and tree depth - at every node. DT
uses cost functions to find these optimal values - most
homogeneous branches or branches having groups
with similar responses. Splits with minimized costs are
favoured and the algorithm eventually stops as soon
as it achieves minimum cost or reaches a terminate
condition created to limit the computational time.

In our implementation, we build a DT model
that performs dataset split by using a greedy search
to minimize a cost function. We consider three cost
functions: misclassification rate, entropy (a measure of
uncertainty), and Gini Index to determine the split at
each node. We remark that the samples are inputted
without standardization and normalization since DT
splits only consider the ordering of numerical values.

3 DATASETS
3.1 Data inspection

There are 155 instances in the Hepatitis dataset and
1151 instances for the Messidor dataset before data
cleaning. Both contain a total of 19 categorical and
numerical attributes; all categorical features are binary.
Only the Hepatitis dataset contains missing values - 80
instances.

3.2 Data processing

We load the raw data into Pandas dataframes and
use the titles of the features as column headers for
better interpretation. The class label of both classes is
named “CLASS”. We record categorical or numerical
types by a Boolean array “feature_type”, and convert
the data to numerical values. The missing values
(indicated by ”?”) are coerced to “NaN” using the
built-in Pandas numerical conversion method. Having
no prior knowledge about the Hepatitis dataset, we
decide remove any instance containing missing values
in order to prevent biases towards certain features.

3.3 Data analysis

We perform statistical analysis on each dataset to
extract distribution trends. For each categorical fea-
ture, we identify the label with the highest frequency.
For numerical data, we calculate the mean, standard
deviation, maximum and minimum of the data. We
observe that the Hepatitis dataset has a small sample
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size (80) and high data imbalance: there are 13 posi-
tive instances (class label 1, indicating “die”) and 67
negative instances (class label 2, indicating “live”). On
the other hand, the Messidor dataset is more balanced
with a sufficient number of samples: 611 positive
samples and 540 negative samples.

3.4 Data split

For the two datasets, we split the data into 80%
for training and 20% for testing. Since the Hepatitis
dataset is small, we perform a 5-fold split to effectively
use the data for training and validation. For the Mes-
sidor dataset, we perform another split on the training
set for validation purposes; we use 80% for training
and 20% for validation.

3.5 Numerical pre-processing

Since KNN models are sensitive to feature scal-
ing, we apply standardization and normalization in
preparation for KNN training specifically. To prevent
data leakage, standardization or normalization is done
separately on the split training and testing sets.

4 RESULTS
4.1 KNN models

We test our KNN model with a range of K val-
ues and our suggested distance functions. Table 1
summarizes the best K-value and testing accuracy for
each configuration. We refer readers to the Jupyter
Notebook file for the full graphical results.

TABLE 1
Distance function and testing accuracy results

Dataset Distance function | Best K | Accuracy (%)
Euclidean 10 81.2
Euclidean (Inverse) 7 87.5
Hepatitis Euclidean (Cosine) 5 100
Manhattan 9 81.2
Manhattan (Inverse) 9 81.2
Manhattan (Cosine) 1 87.5
Euclidean 21 65.8
Euclidean (Inverse) 36 64.5
Messidor Euclidean (Cosine) 30 65.8
Manhattan 21 65.8
Manhattan (Inverse) 24 65.4
Manhattan (Cosine) 24 67.5

For the Hepatitis dataset, we notice the outstand-
ing 100% testing accuracy with cosine-similarity and
Euclidean distance at K = 5. However, after multi-
ple runs with different random splitting, we believe
that this “perfect” outcome is likely to be a mere
coincidence due to randomness and the small size of
the dataset. Beside this anomaly, the testing accuracy
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achieved is around 80% in any other case. Based on
our results, a weighted KNN generally improves the
prediction accuracy. Moreover, the optimal K-values
for the weighted versions are reduced compared to
the unweighted version, which can imply a decreased
computational time.

The Messidor dataset, however, shows a different
trend in the accuracy and optimal K-value. For this
dataset, there is no significant boost in the overall
accuracy despite the use of weights. In fact, the only
improvement occurs from using cosine similarity on
Manhattan distance. For both Euclidean and Man-
hattan distances, the testing accuracy achieved by
inverse-distance similarity is reduced by around 1%.

4.2 DT models

Using misclassification, entropy, and Gini Index
as cost functions, we test the optimal maximum tree
depth and obtain the testing accuracy, as summarized
in Table 2.

For the Hepatitis dataset, the best accuracy, 81.5%,
is obtained by a tree with max-depth 2 and misclas-
sification cost. The shallow optimal tree depth of 2
for this dataset may be explained by the relatively
small dataset size. In contrast, the Messidor dataset
requires a greater tree depth and the best accuracy
achieved is lower (67.1% using Gini Index). We remark
that altering the minimum number of leaf nodes does
not result in significant changes in the tree depth or
testing accuracy for both datasets. We also point out
that Gini Index has a poorer training and validation
accuracy on the Hepatitis dataset, while it provides the
best training and validation accuracy on the Messidor
dataset.

TABLE 2
Max tree depth and testing accuracy results

Dataset Cost function | Max depth | Accuracy (%)
Misclassification 2 81.5
Hepatitis Entropy 1 75.0
Gini Index 5 68.8
Misclassification 4 58.4
Messidor Entropy 5 60.2
Gini Index 9 67.1

4.3 Feature selection and decision boundaries

To illustrate the decision boundaries, we select a
pair of important numerical features for each dataset.
We evaluate the feature importance by LinearRegres-
sion for the KNN model and RandomForestRegressor
for the DT model. Both of these built-in functions from
sklearn output a score for each feature, and a higher
score reflects a greater significance of the feature for
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the corresponding model. Figure 1 shows an illustra-
tion of KNN feature importance for Hepatitis feature
selection, and Figure 2 presents DT feature importance
for the Messidor dataset.

KNN feature importance for Dataset 1
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Fig. 1. KNN model feature importance results for Hepatitis dataset

Decision tree feature importances for Dataset 2
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Fig. 2. DT model feature importance results for Messidor dataset

For categorical features, the intermediate values
between class labels are not meaningful, and thus
decision boundary plots involving categorical features
are not directly interpretable. For this reason, we
choose two sufficiently important numerical features,
reflected by either the feature importance scores or
the dataset statistics. For instance, while the absolute
LinearRegression scores of the features "MALAISE”
and “ANOREXIA” are the highest for KNN on the
Hepatitis dataset, we do not choose these features for
the decision boundary plots because of their categori-
cal nature.

4

Figure 3 shows the KNN decision boundaries with
K =5 and Figure 4 the DT decision boundaries with
max-depth 6, using Hepatitis dataset. As a general
observation, a majority of data points can be accu-
rately classified by the decision boundaries for DT
as max-depth increases. However, since the decision
boundaries only work well with small K values for the
KNN model, we notice that the regions are no longer
clearly defined as K increases.
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Fig. 3. KNN Decision boundaries for Hepatitis dataset

DT(Max depth = 6)
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Fig. 4. DT Decision boundaries for Hepatitis dataset

4.4 Model evaluation and comparison

As mentioned before, the Hepatitis dataset is
small and imbalanced. Hence, we choose to plot the
precision-recall (PRC) curve and compute AUPRC for
both models with various K values against a random
prediction. We find that for the KNN model, as the
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K value increases from 5 to 20, we find that K =
10 and 15 give the best AUPRC with 0.38. For the
DT model, as the tree depth increases from 3 to 15,
AUPRC is increased from 0.18 to 0.36. Both cases
show a definitive difference from the performance of
a random classifier. Figure 5 demonstrates the PRC
curve for both models on Hepatitis dataset.

For the Messidor dataset, as it is a larger and
more balanced dataset, we evaluate the training per-
formance with both ROC and PRC. For the ROC and
AUROC, we find that as K increases from 5 to 25, the
AUROC for KNN model does not change by much
(from 0.66 to 0.69), on the other hand, for the DT
model, we find that an increased max-depth from 3
to 23 improves the AUROC (from 0.54 to 0.63). The
complete results are attached in the code.
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Fig. 5. PRC results for the two models on Hepatitis dataset

5 DiscusSION AND CONCLUSION
5.1 Effect of standardization and normalization

From our experiments, we notice that standard-
ization is more suitable for the Hepatitis dataset
while normalization is slightly better for the Messidor
dataset in training with KNN. As mentioned above,
we run the learning algorithms without performing
numerical pre-processing for DT training, due to its
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scale-insensitive nature. This aligns with the general
machine learning principle of choosing a suitable pre-
processing method on a case-by-case basis.

5.2 Effect of function choices

We observe that the choice of distance functions
(for KNN) or the choice of cost functions (for DT)
varies by much on different datasets. We also notice
that the weighted KNN enhances the performances
for the Hepatitis dataset but generally degrades the
performance for the Messidor dataset. This reflects
that the optimality of function choices for learning
algorithms are case-specific.

5.3 Decision tree and overfitting

We observe that increasing the tree depth improves
the training accuracy for both datasets as expected.
However, deepening the tree depth too much can
result in overfitting and poor generalizations. This is
also evident from the experiments that the training
accuracy converges to 100% up to a certain depth,
while the validation accuracy fluctuates around the
same range away from perfect predictions.

5.4 Feature selections

We perform several experiments to test for the key
features. One of the tests is to drop one feature at a
time and inspect the testing accuracy of models on
the modified dataset. We find that the removal of the
features does not result in a significant change in the
testing accuracy (within 2% in most cases), and this
observation also applies to features known to have
high feature importance scores, such as "PROTIME”
identified in the Hepatitis data. We refer readers to
our code for a more detailed analysis.

5.5 Future directions

One possible direction for investigation is to ex-
plore other data pre-processing techniques, such as
linear regression, to interpolate the missing values or
dropping only the instances that are statistically irrele-
vant. Retaining more samples can potentially increase
the overall accuracy, especially for small datasets like
the Hepatitis dataset with limited valuable data.
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