
COMP 551, PROJECT 3, FALL 2022 1

Neural Networks Classification on Fashion-MNIST
Group 47 - Preetesh Rambarun, Ben Cheung, Andrew Chao

Abstract—The neural network is one of the most broadly used machine learning algorithms for its flexibility and expres-
siveness. Some of the most common types of neural networks include perceptron, multi-layer perceptron, convolutional, and
recurrent. One particular use case in which neural networks find extensive applications is image classification. In this report,
we implement a Multi-Layer Perceptron (MLP) model to classify images from the Fashion-MNIST dataset. We investigate the
effect of different MLP designs on accuracy and efficiency, including depth, width and choices of activation functions. We also
compare our MLP implementation with a Convolutional Neural Network model (CNN).

✦

1 INTRODUCTION

N EURAL networks are collections of machine
learning algorithms that in a sense mimic the

interactions of biological neurons in the human ner-
vous system. The adaptiveness of a neural network al-
lows the algorithm to make improvements by learning
from mistakes, and the complexity permits a neural
network to perform generalized inference tasks. In
the modern tech-driven world, neural networks con-
tribute to complex applications like facial recognition,
text translation, credit card fraud detection, and med-
ical diagnosis. [1]

In this project, we implement one of the fundamen-
tal neural network models, Multi-Layer Perceptron
(MLP), and test the implementation on the image
classification tasks on the Fashion-MNIST dataset [2].
The Fashion-MNIST dataset provides a collection of
fashion-based images, and the dataset is developed
with the objective of providing a benchmark dataset
for neural network models alternative to the well-
known MNIST dataset [2].

To evaluate our model performance, we study the
effect of various MLP architectures, for instance, the
number of units in hidden layers (i.e. width), the
number of hidden layers (i.e. depth), and the acti-
vation functions between linear layers. To compare
the optimal performance of different architectures,
we train and test our model based on the optimal
hyperparameter combination provided by grid search,
and implement the early stopping feature to prevent
overfitting. We also compare and contrast our MLP
implementation with a Convolutional Neural Net-
work (CNN) using the same processed image data.

By varying the different parameters of our MLP
implementation, we achieve an optimal accuracy of
over 80% for most of the MLP architectures in trials.
We notice that the width is the determining factor

of run-time and memory usage: an increase in width
contributes to a drastic increase in training time and
memory used for training, while an increase in depth
or a change of activation functions has little effect
on these two aspects. We also remark that the CNN
achieves a similar accuracy but a worse efficiency as
compared to most of the test runs on our MLPs.

1.1 Related Works

The Fashion-MNIST dataset has been widely used
in works related to computer vision. This emerges as
an increasingly important application as computers
are proven to outperform humans in interactions with
large image datasets through machine learning pro-
cesses. The Fashion-MNIST dataset serves as a bench-
mark dataset along with the more well-known MNIST
dataset. As an example, the CNN model developed in
[3] was tested on both the Fashion-MNIST dataset and
the MNIST dataset, and they observed a high accu-
racy on Fashion-MNIST (92%) and an almost perfect
accuracy of 99.7% on the original MNIST dataset.

The accuracy results in the above example echo the
motivations for creating the Fashion-MNIST dataset
from the creators [2]: the MNIST dataset is considered
to be simple in present-day’s view with the numer-
ous deep learning techniques developed since the
dataset’s introduction more than two decades ago.

2 MODELS

This report’s primary model in focus is the MLP
model. It is based on the linear learning algorithm of
perceptron. The combination of non-linear activation
functions and a multi-layer structure of MLP resolves
the divergence issue for non-linear separable data for
the ordinary perceptron algorithm.



COMP 551, PROJECT 3, FALL 2022 2

2.1 MLP Model

We implement the MLP model based on the object-
oriented programming (OOP) principle. In our imple-
mentation, with reference to the course’s Colab codes
[4], an MLP object is defined by a list of alternating
linear layers and activation function layers and an
optimizer. We highlight some features of our MLP
class implementation.

2.1.1 Linear Layer
We implement L2-regularization to the linear lay-

ers as a base feature, and initiate λ = 0 by default
for the ordinary unregularized case. In addition, we
set a parameter noise_scale to control the scales
of the weight and bias initialization. This mitigates the
vanishing gradient problem, which we elaborate in the
next sections.

2.1.2 Activation Function Layer
The activation functions we implement include

ReLU, tanh, LeakyReLU, sigmoid (σ), softplus
and Exponential Linear Unit (ELU).

Moreover, in order to produce multi-class categor-
ical predictions, we use the softmax function as the
output layer. It is noticed that softmax is prone to
vanishing gradient problem: the c-th coordinate of
softmax(a) is calculated by

ŷc =
exp(ac)∑
c exp(ac)

,

which can incur large numbers in the exp calculations
despite the fact that ŷc ∈ [0, 1]. This numerical instabil-
ity issue is resolved by using the equivalent formula

ŷc =
exp(ac − amax)∑
c exp(ac − amax)

,

where amax is the maximum entry of a. This alternative
formula guarantees that each exp takes a non-positive
argument and hence bounds each exp(·) term between
0 and 1.

2.1.3 Optimizer
To address computation cost concerns, we imple-

ment mini-batch gradient descent as the default set-
ting. This prevents extensive memory usage with the
trade-off of an increase in run-time.

We implement a simple early-stopping criterion for
our MLP model. Given a validation set, the early-
stopping criterion is provoked when the validation
loss increases or the validation accuracy decreases.
The training is stopped in k rounds after the criterion
is triggered, where k is a parameter of the fitting
function commonly known as ”patience”.

2.2 MLP Gradient Verification

To ensure the correctness of the MLP implemen-
tation, we implement a gradient check function. This
verifies that the numeric gradient ∇n calculated by
small perturbations on the weights and biases approx-
imates the derived gradient ∇d closely. We evaluate
the closeness of approximation in two senses:

• Absolute: we check that ∥∇n −∇d∥ is small.
• Relative: we notice that the measure proposed

in Lecture 4.3 behave poorly when the values
are close to zero. We adopt the approach in [8]
to check that the following quantity is small:

Perturbation factor =
∥∇n −∇d∥

∥∇n∥ − ∥∇d∥
.

The gradient check results are in Appendix A.

2.3 CNN Model

The Keras library, a deep learning API built on
top of TensorFlow [5], is used to implement our CNN
model, with reference to the course’s Colab codes.
[6] Keras is highly optimized and allows users to
configure hyperparameters, activation functions, and
operations (e.g., dropout factor and max pooling) eas-
ily. For this work, we create a 2-convolutional and
2-fully connected layers with varying operations and
parameters (e.g., filer size and stride size) to compare
with our MLP model.

2.4 Hyperparameter Tuning

Hyperparameter tuning is a crucial step to opti-
mize the performance of MLPs. We make use of the
GridSearchCV function in sk-learn library [7] for
the tuning. The primary hyperparameter for tuning
is the learning rate (lr), L2 regularization penalty (λ),
and for some parameters in activation functions, such
as LeakyReLU and Softplus.

For run-time concerns, we conduct the tuning with
the following validation strategy: for each combina-
tion of hyperparameters in test, we run the fitting
procedure once on a fixed choice of the training set
and validation set. For cases where more than one
hyperparameter requires tuning, the number of hy-
perparameter combinations may become too high for
an effective exhaustive search. In such cases, we use
RandomizedSearchCV [9] from sk-learn to check
on a random subset of hyperparameter configurations.

We do not tune the number of epochs in the
procedure since it requires tracking of the validation
loss and accuracy per epoch. The built-in performance
evaluation of GridSearchCV does not provide such
information. We get around the issue by passing a



COMP 551, PROJECT 3, FALL 2022 3

tuple of lists to the fitting function of our MLP class
implementation to record the histories over all epochs
for each test. This permits us to directly inspect the
loss and accuracy curves for signs of overfitting. In
combination with the early stopping criterion imple-
mented, the hyperparameter tuning is performed ef-
fectively in choosing the parameters yielding the best
performance while avoiding overfitting.

3 FASHION-MNIST DATASET

3.1 Data Inspection
It is inspected that Fashion-MNIST consists of a

training set of 60,000 examples and a test set of
10,000 examples; the dataset is a collection of fashion-
related images. Each data sample is a 28x28 square
pixel grayscale image, associated with a label from 10
different classes. Both the training and testing datasets
are equidistributed over the 10 classes.

3.2 Data Processing
We vectorize each image sample to an array of 784

entries. For each of the training and testing datasets,
we prepare a normalized version and retain an unnor-
malized version. For each version of the training set,
we keep 20% of the testing data (i.e. 12,000 samples)
as the validation set for hyperparameter tuning and
validation during fitting.

4 RESULTS

In this section, we present the results based on the
investigation of different numbers of hidden layers,
hidden units, and different choices of activation func-
tions of our MLP and CNN implementation.

4.1 Basic MLP Models with ReLU
We inspect the performances of MLPs with 0, 1

and 2 hidden layers, respectively. We use 128 units per
hidden layer and ReLU activation and 10 epochs for
this experiment. Table 1 summarizes the test results.

We observe that the optimal test accuracy for
0-hidden-layer MLP is 83.43%, which is about 3%
lower than those for 1-hidden-layer MLP (86.09%) and
2-hidden-layer MLP (85.46%). As anticipated, non-
linearity granted by MLPs with hidden layers in-
creases the test accuracy. A 0-hidden-layer MLP with
softmax output is simply equivalent to a multiclass
classification model. With non-linear activation func-
tions inserted between the linear layers, the model is
able to handle more complex relations. On the other
hand, the 3% improvement is somewhat lower than
expected, but it can be reasoned that the 10 categories

are mostly distinguished and the linear separability
assumption is not greatly violated.

The more discernible element of the model perfor-
mance is the training time. As shown in Table 1, the
MLP with no hidden layers has a significantly shorter
training time. This is expected because the presence
of hidden layers introduces substantially more weight
and bias parameters to be updated. This is evident
from the number of parameters to be checked by
gradient check: only 7,850 parameters are checked
without hidden layer, while there are 101,770 and
118,282 weight and bias parameters for 1 and 2 hidden
layer cases respectively.

TABLE 1: Training performance with different num-
ber of hidden layers (learning rate = lr)

Hidden layers Hidden units lr Run-time Accuracy
0 N/A 0.15 25s 83.43%
1 128 0.25 3min 40s 86.09%
2 128 0.05 4min 22s 85.46%

Fig. 1: One Hidden Layer MLP loss curves

Fig. 2: One Hidden Layer MLP accuracy curves

As an example, Figures 1 and 2 show the loss and
accuracy curves for 1-hidden-layer MLP. Appendix B
shows the complete results for this task.



COMP 551, PROJECT 3, FALL 2022 4

4.2 Effects of activation functions

We compare the performance of 2 layer MLPs
with different activation functions, 128 hidden units
each, and 10 epochs. Besides ReLU and tanh activation
functions, we implement four additional activation
functions, namely LeakyReLU, Sigmoid, Softplus
and ELU, and compare their performance. The result
is summarized in Table 2. For clarity, we fine tune the
two activation functions with extra parameters here:

• LeakyReLU: fa(x) = max(x, 0) + a×min(x, 0).
• ELU: fa(x) = max(x, 0) + min(a(ex − 1), 0).

The detailed results can be found in Appendix C.

TABLE 2: Training performance with different activa-
tion functions (learning rate = lr; Hyper-parameters
= H. parameters)

Activation lr H. parameters Run-time Accuracy
ReLU 0.15 N/A 4min 22s 85.46%
tanh 0.10 N/A 4min 21s 85.44%

LeakyReLU 0.20 a = 0.10 3min 09s 85.53%
Sigmoid 0.20 N/A 4min 22s 85.97%
Softplus 0.15 N/A 4min 07s 84.97%

ELU 0.15 a = 0.10 4min 16s 86.44%

It is known that the activation functions tanh and
Sigmoid are prone to vanishing gradient problems.
However, based on our results, we see no considerable
differences between these two activation functions and
the other ones in terms of accuracy and run-time.
This observation could be attributed to the relatively
shallow depth (2) of the MLPs, so the vanishing gra-
dient problem can be mitigated by simply initializing
a suitable noise_scale for each linear layer.

4.3 L2 Regularization

To investigate the effect of L2 regularization, we
consider a 2-hidden-layer MLP with ReLU activa-
tion and 128 hidden units for both layers. For this
case, we have two hyperparameters: lr and λ, to be
tuned. Based on the optimal hyperparameters (lr, λ) =
(0.02, 0.005), the test accuracy with L2 regularization
is 85.04%. We check the gradient and ensure the cor-
rectness of implementation (Appendix A). Compared
with the test accuracy without regularization(85.46%),
we can see that the L2 regularization poses little effect
on the performance of the Fashion-MNIST dataset.

As an additional experiment, we investigate the ef-
fect of different λ across layers. We perform a random
search for the optimal combination of (lr, λ) due to
computational time concerns. By hyperparameter tun-
ing, the optimal hyperparameters are (lr, λ1, λ2, λo) =
(0.02, 0.005, 0.01, 0.005). The test accuracy using this
hyperparameter configuration is 84.45%, which is

comparable to the uniform λ case. The detailed results
of regularization-related experiments can be found in
Appendix D.

4.4 Unnormalized Images

As another test, we train the 2-hidden-layer MLP
with unnormalized images. The optimal learning rate
is lr = 15×10−5. As expected, this optimal lr is smaller
in magnitude compared with the lr for the normalized
case. The test accuracy for the unnormalized case
is 81.04%, which is lower than the normalized case
(86.40%) by almost 5%. We also remark that more
fluctuations in loss and accuracy curves for training,
validation and testing are observed. The complete
results can be found in Appendix E.

4.5 Convolutional Neural Network

We construct a 2-layer CNN with several CNN-
specific features for image processing. We use max-
pooling to reduce the dimensions of feature map and
dropout to prevent overfitting. We run the model with
the same settings: 32 filters, 128 batch size, 3 kernal
size, 30 epochs, 2 strides, 2 max-poolings, 128 hidden
units and 0.25 dropout rate. We test it with three
different commonly used optimizers: rmsprop, SGD,
and adam. The detailed structure of the CNN model
can be found in Appendix F.

TABLE 3: CNN performance summary

Optimizer Test accuracy Run-time(s)
SGD 88.33% 83.15
adam 92.12% 82.74

rmsprop 92.26% 96.03

As for the comparison between the MLP and CNN
models, we notice that for the CNN models, the test
accuracy improves as compared with MLP, and the
training time is substantially shorter than our model.
However, we point out that the CNN accuracy using
SGD (88.33%) is highly comparable to the best MLP
accuracy we attained (86.68%), achieved by an MLP
with 1 hidden layer of 128 units. We refer readers to
Appendix F for the extensive training results of CNN.

4.6 Different MLP Architecture Features

We also investigate the performance of our model
with different combinations of parameters: the num-
ber of hidden layers, the number of units in hidden
layers, and the choice of activation functions. Due to
space limitations, the performance summary for each
experiment can be found in Appendix G. We highlight
several discussion points in the section.



COMP 551, PROJECT 3, FALL 2022 5

An important observation is that the increased
depth does not improve the model performance
greatly. The optimal testing accuracies for MLPs with
3 and 4 hidden layers are 86.48% and 85.52% respec-
tively, which are comparable to the 2-hidden-layer
case. The training times for deeper neural networks
are also similar.

In contrast, a varying width poses a more observ-
able impact on the training efficiency. The training
accuracy for narrower (16 or 32 units per hidden layer)
or (256 units per hidden layer) is comparable to the
base case of 128 units per hidden layer. However, the
training time is basically proportional to the width. As
an example, for a width of 256, the training time for
MLPs with 1 and 2 hidden layers are 7 min 44 s and 8
min 34 s respectively. These are almost double of the
respective time marks (3 min 40 s and 4 min 22 s) for
the width-128 cases.

As a side experiment, we test with MLPs of non-
uniform widths, and no significant improvement or
degradation is observed. A more interesting experi-
ment is the choice of activation functions for MLPs
with greater depth. We test the 3-hidden-layer MLPs
with ReLU activation replaced by tanh and Sigmoid,
two activation functions tending to induce the van-
ishing gradient problem. Our experiments reflect that
Sigmoid is more prone to the vanishing gradient
problem: the optimal test accuracy attained by tanh
activation remains high at 85.58%, but the accuracy at-
tained by Sigmoid activation deteriorates to 53.80%.

4.7 Different Training Set Sizes
We also investigate the effect of varying training

set sizes by training on a 2-hidden-layer width-128
MLP. The test performances are tabulated below. As
anticipated, the training time and accuracy increase
with the training set size.

TABLE 4: Training with different training set sizes

Training set size Run-time Accuracy Epochs
10 1 s 16.84 % 3
100 8 s 64.29 % 10

1,000 8 s 72.09 % 9
10,000 21 s 81.23 % 4

In all cases, the early stopping condition is reached
due to worsening validation loss or accuracy.

5 DISCUSSION AND CONCLUSION

5.1 Depth and Width of MLPs
It is a widely-accepted principle that increasing

MLP depth is preferable to MLP width. From our
experiments, the contrast between the choices is less

noticeable than one would expect. We observe a con-
sistent test accuracy of over 80% and not beyond 87%
for almost every depth or width structure tested. How-
ever, the effect of layer width on training efficiency is
more prominent. The increased training time for wider
hidden layers is clearly reflected in Table 6.

The deterred training efficiency can be attributed to
the increase in the number of parameters; for the same
reason, increased widths cause the training procedure
to be more memory-demanding.

5.2 Comparison between CNN and MLP Models
As shown in Table 3, by using an rmsprop or

adam optimizer, the CNN model outperforms our
MLP model in terms of training accuracy and effi-
ciency. However, the more interesting comparison is
the 88.33% CNN test accuracy attained by an SGD
optimizer, which is very close to 86.68%, the best
accuracy achieved by our MLP model. Noting that the
optimizer we adopt is mini-batch gradient descent, a
close variant to SGD, one may expect that the opti-
mizer plays a significant role in the model accuracy.
For future works, the implementation of rmsprop or
adam optimizer for the MLP model serves as a sensible
first step for improvement.

On the other hand, the CNN models built from the
Keras library can be trained efficiently. This is likely
due to the highly optimized codes of Keras library
with GPU usage.

5.3 Simplicity of Fashion-MNIST Dataset
The experiments conducted reflect the relative sim-

plicity of the Fashion-MNIST dataset, a feature of the
dataset by design. While the dataset can be used for
effective training, the effect of depth, regularization or
activation function becomes relatively obscured.

5.4 Future Works
As mentioned, the implementation of more ad-

vanced optimizers is one of the probable improve-
ments for our MLP model. Other kinds of regulariza-
tion like L1-regularization may also be implemented.

For a more comprehensive study on the effects
of different MLP structures, one may conduct similar
testing over datasets of different sample sizes, feature
sizes and numbers of output categories.

6 STATEMENT OF CONTRIBUTIONS

Ben implemented the MLP model, hyperparameter
tuning, and model analysis. Andrew implemented the
CNN model and contributed to L2 regularization.
Preetesh performed reviews on related works and
literature, and model and results analysis.



COMP 551, PROJECT 3, FALL 2022 6

REFERENCES

[1] Chandra, R. (2022, September 22). Neural networks: Ap-
plications in the real world. upGrad blog. Retrieved
November 17, 2022, from https://www.upgrad.com/blog/
neural-networks-applications-in-the-real-world/

[2] Xiao, Han, Kashif Rasul, and Roland Vollgraf. ”Fashion-
mnist: a novel image dataset for benchmarking machine
learning algorithms.” arXiv preprint arXiv:1708.07747 (2017).

[3] Ezeugwa, Gerrard. (2022). DEVELOPING A DEEP
LEARNING-BASED IMAGE MULTICLASS CLASSIFIER:
CASE STUDY OF FASHION MNIST DATASET.
10.13140/RG.2.2.18165.04326.

[4] Deep Multilayer Perceptron (MLP), Harley Wiltzer
and Yue Li. COMP 551 notebook. Available at
https://github.com/yueliyl/comp551-notebooks/
blob/master/NumpyDeepMLP.ipynb?fbclid=IwAR2m
cj79-ustBQtnIhhmvMlT43mAIQ0BUGGfYCrXrYsUyaKNS
Zrv7szvk

[5] Chollet, F. & others, 2015. Keras. Available at:
https://github.com/fchollet/keras.

[6] CNN , Abdelrahman Ayad and Yue Li. COMP 551
notebook. Available at https://github.com/yueliyl/
comp551-notebooks/blob/master/CNN.ipynb

[7] GridSearchCV, Scikit-learn. Available at https:
//scikit-learn.org/stable/modules/generated/sklearn.
model selection.GridSearchCV.html

[8] CSC 411 Lecture 8: Linear Classification II, Mengye Ren
and Matthew MacKay. University of Toronto. Retrieved De-
cember 4, 2022, from https://www.cs.toronto.edu/∼mren/
teach/csc411 19s/lec/lec08.pdf.

[9] RandomizedSearchCV, Scikit-learn. Available at
https://scikit-learn.org/stable/modules/generated/
sklearn.model selection.RandomizedSearchCV.html

https://www.upgrad.com/blog/neural-networks-applications-in-the-real-world/
https://www.upgrad.com/blog/neural-networks-applications-in-the-real-world/
https://github.com/yueliyl/comp551-notebooks/blob/master/NumpyDeepMLP.ipynb?fbclid=IwAR2m_cj79-ustBQtnIhhmvMlT43mAIQ0BUGGfYCrXrYsUyaKNS_Zrv7szvk
https://github.com/yueliyl/comp551-notebooks/blob/master/NumpyDeepMLP.ipynb?fbclid=IwAR2m_cj79-ustBQtnIhhmvMlT43mAIQ0BUGGfYCrXrYsUyaKNS_Zrv7szvk
https://github.com/yueliyl/comp551-notebooks/blob/master/NumpyDeepMLP.ipynb?fbclid=IwAR2m_cj79-ustBQtnIhhmvMlT43mAIQ0BUGGfYCrXrYsUyaKNS_Zrv7szvk
https://github.com/yueliyl/comp551-notebooks/blob/master/NumpyDeepMLP.ipynb?fbclid=IwAR2m_cj79-ustBQtnIhhmvMlT43mAIQ0BUGGfYCrXrYsUyaKNS_Zrv7szvk
https://github.com/yueliyl/comp551-notebooks/blob/master/CNN.ipynb
https://github.com/yueliyl/comp551-notebooks/blob/master/CNN.ipynb
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
https://www.cs.toronto.edu/~mren/teach/csc411_19s/lec/lec08.pdf
https://www.cs.toronto.edu/~mren/teach/csc411_19s/lec/lec08.pdf
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.RandomizedSearchCV.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.RandomizedSearchCV.html


COMP 551, PROJECT 3, FALL 2022 7

APPENDIX A
GRADIENT COMPUTATION

TABLE 5: Gradient check results

Hidden layers L2-dis. between numeric and derived gradient Perturbation factor
0 5.3447e-05 3.8649e-06
1 6.6666e-04 5.5015e-05
2 5.3447e-05 3.8649e-06

2 (with L2 penalty) 1.4917e-03 1.5597e-04

APPENDIX B
NORMALIZED IMAGES WITH 0 AND 2 HIDDEN LAYERS

The results for 1 hidden layer have been shown in Section 4.1. Figure 4 shows the 0-hidden-layer MLP loss
and accuracy with the optimal learning rate 0.1.

(a) 0 layer MLP loss over epochs (b) 0-hidden-layer loss over accuracy

Fig. 3: GridSearchCV results for lr for 0-hidden-layer MLP

(a) 0 layer MLP convergence curve results (b) 0 layer MLP accuracy results

Fig. 4: 0 layer experiment results with the optimal lr = 0.1



COMP 551, PROJECT 3, FALL 2022 8

Figure 6 shows the 2-hidden-layer MLP loss and accuracy with the optimal learning rate 0.08.

Fig. 5: GridSearchCV results for lr for 2 layer MLP

(a) 2 layer MLP convergence curve results (b) 2 layer MLP accuracy results

Fig. 6: 2 layer experiment results with the optimal lr = 0.08



COMP 551, PROJECT 3, FALL 2022 9

APPENDIX C
DIFFERENT ACTIVATION FUNCTIONS ON MLP
C.1 Hyperbolic Tangent

Testing accuracy = 85.44%

(a) Training and Validation loss curves (b) Training and Validation accuracy curves

Fig. 7: Hyperbolic Tangent Activation Results

C.2 LeakyReLU
Testing accuracy = 85.53%

(a) Training and Validation loss curves (b) Training and Validation accuracy curves

Fig. 8: LeakyReLU Activation Results



COMP 551, PROJECT 3, FALL 2022 10

C.3 Sigmoid
Testing accuracy = 85.97%

(a) Training and Validation loss curves (b) Training and Validation accuracy curves

Fig. 9: Sigmoid Activation Results

C.4 Softplus
Testing accuracy = 84.97%

(a) Training and Validation loss curves (b) Training and Validation accuracy curves

Fig. 10: Softplus Activation Results



COMP 551, PROJECT 3, FALL 2022 11

C.5 ELU

Testing accuracy = 86.44%

(a) Training and Validation loss curves (b) Training and Validation accuracy curves

Fig. 11: LeakyReLU Activation Results

APPENDIX D
L2 REGULARIZATION WITH 2 MLP LAYERS

Figure 12 shows the GridSearchCV results for the lr and λ. We determine the optimal values are lr = 0.2
and λ = 0.005. Figure 13 shows the test accuracy results.

Fig. 12: GridSearchCV results for lr and λ for L2-regularization 2 layer MLP



COMP 551, PROJECT 3, FALL 2022 12

(a) L2 regularization convergence curve (b) L2 regularization accuracy results

Fig. 13: L2-regularization experiment results

Figure 14 shows the GridSearchCV results for the lr and λ with λ varying across layers. We determine the
optimal values are lr = 0.25 and (λ1, λ2, λo) = (0.005, 0.01, 0.005). Figure 15 shows the test accuracy results.

Fig. 14: GridSearchCV results for lr and λ for L2-regularization 2 layer MLP with varying λ



COMP 551, PROJECT 3, FALL 2022 13

(a) L2 regularization convergence curve (b) L2 regularization accuracy results

Fig. 15: L2-regularization experiment results with lr = 0.25, (λ1, λ2, λo) = (0.005, 0.01, 0.005)

APPENDIX E
UNNORMALIZED IMAGES WITH 2 MLP LAYERS

Figure 16 shows the GridSearchCV results for the lr. We determine the optimal values are lr = 0.00015.
Figure 17 shows the test accuracy results.

(a) Unnomalized image 2 layer MLP loss over epochs (b) Unnomalized image 2 layer MLP loss over accuracy

Fig. 16: GridSearchCV results for lr for unnormalized 2 layer MLP



COMP 551, PROJECT 3, FALL 2022 14

(a) Unnomalized images convergence curve (b) Unnomalized images accuracy curve

Fig. 17: Unnomalized images with 2 layer MLP experiment results

APPENDIX F
CNN MODEL RESULTS

The following table summarizes the CNN model structure.

TABLE 6: CNN model structure

Layer (type) Output shape Number of parameters
Conv 2d (None,28,28,32) 320

Max pooling2d 2 (None,14,14,32) 0
Conv 2 (None,12,12,64) 18496

Max pooling2d 2 (None,6,6,64) 0
Dropout (None,6,6,64) 0
Flatten (None,2304) 0
Dense (None,128) 295040
Dense (None,128) 16512
Dense (None,10) 1290

Total parameters 331,658
Trainable parameters 331,658

Non-trainable parameters 0

The following figures show the loss and accuracy curves for the CNN model using the three different
optimizers, SGD, adam and rmsprop.



COMP 551, PROJECT 3, FALL 2022 15

(a) Loss curves for CNN with SGD optimizer (b) Accuracy curves for CNN with SGD optimizer

Fig. 18: CNN training results with SGD optimizer

(a) Loss curves for CNN with ADAM optimizer (b) Accuracy curves for CNN with ADAM optimizer

Fig. 19: CNN training results with ADAM optimizer



COMP 551, PROJECT 3, FALL 2022 16

(a) Loss curves for CNN with rmsprop optimizer (b) Accuracy curves for CNN with rmsprop optimizer

Fig. 20: CNN training results with rmsprop optimizer

APPENDIX G
DIFFERENT MLP ARCHITECTURE

TABLE 7: Different MLP Architecture

Test Hidden layers Hidden units Activation Learning rate Run-time Test Accuracy (%)
Effects of depth

1 3 128 All ReLU 0.1 10 min 54s 86.48%
2 4 128 All ReLU 0.15 5 min 03s 85.52%
2 3 128 All tanh 0.1 5 min 59s 85.58%
2 3 128 All Sigmoid 0.05 5 min 59s 53.08%

Effects of width
3 1 16 ReLU 0.25 34s 85.14%
4 2 16 All ReLU 0.3 40s 84.15%
5 1 32 ReLU 0.2 1 min 05s 85.19%
6 2 32 All ReLU 0.25 4 min 85.87%
5 1 256 ReLU 0.15 7 min 44s 86.37%
6 2 256 All ReLU 0.2 8 min 34s 86.62%

Effects of varying hidden units
9 2 16, 128 All ReLU 0.15 1 min 11s 84.88%
10 2 128, 16 All ReLU 0.2 1 min 84.91%


	Introduction
	Related Works

	Models
	MLP Model
	Linear Layer
	Activation Function Layer
	Optimizer

	MLP Gradient Verification
	CNN Model
	Hyperparameter Tuning

	Fashion-MNIST Dataset
	Data Inspection
	Data Processing

	Results
	Basic MLP Models with ReLU
	Effects of activation functions
	L2 Regularization
	Unnormalized Images
	Convolutional Neural Network
	Different MLP Architecture Features
	Different Training Set Sizes

	Discussion and Conclusion
	Depth and Width of MLPs
	Comparison between CNN and MLP Models
	Simplicity of Fashion-MNIST Dataset
	Future Works

	Statement Of Contributions
	References
	Appendix A: Gradient computation
	Appendix B: Normalized images with 0 and 2 hidden layers
	Appendix C: Different activation functions on MLP
	Hyperbolic Tangent
	LeakyReLU
	Sigmoid
	Softplus
	ELU

	Appendix D: L2 Regularization with 2 MLP layers
	Appendix E: Unnormalized images with 2 MLP layers
	Appendix F: CNN model results
	Appendix G: Different MLP Architecture

